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Abstract. The internal strain parameter of diamond has been found from the uniaxial 
stress-dependence of the integrated intensity of the ‘forbidden’ 006 reflection. Synchrotron 
radiation from the storage ring DORIS-HASYLAB was conditioned by a gold mirror to 
provide the 006 and 008 reflections from the sample. Integrated intensities were recorded 
using an energy-dispersive method. The value found isA = -0.031 * 0.005 and corresponds 
to a bond-bending parameter = 0.125 t 0.020. This value is in accord with two recent 
theoretical values based on a bond-charge model and on an ab initio pseudopotential 
calculation. 

1. Introduction 

We have previously measured (Cousins et a1 1982a, 1982b) and remeasured (Cousins et 
a1 1987) the internal strain parameters of silicon and germanium using the energy- 
dispersive x-ray diffraction technique. This type of measurement, using bremsstrahlung 
from an x-ray tube, is applicable to relatively few materials because it requires the study 
of the stress-dependence of a reflection that is either strictly forbidden or very weak in 
the absence of stress: Si and Ge come in the former category, GaAs and InSb in the 
latter. Other materials require inordinately long measurement times. 

The natural progression of our studies towards diamond itself was hindered by two 
factors: firstly the scattering power of carbon is small and secondly the internal strain 
parameter is predicted to be as much as a factor of six smaller than that of Si or Ge  
(Nielsen 1986). Both these problems are overcome by the use of synchrotron radiation. 
Not only is the intensity greater but a novel experimental procedure may be used to 
optimise the measurements. The latter exploits the use of a totally reflecting gold mirror 
to reduce the intensity of the strong high-order reflections that would otherwise saturate 
the detector. 

The reason for our remeasurement of Si and Ge was a suspicion, subsequently 
confirmed, that the strain in the surface of the crystals was not the same as the mean 
strain deduced from elasticity theory. The cause of this discrepancy is believed to be 
elastic mismatch between the anvils of the uniaxial press and the sample. In the present 
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work this problem is solved by taking measurements in transmission, thereby sampling 
the mean strain rather than the surface strain. 

In Q 2 we recall the theory behind the measurement, in § 3 we describe the way it is 
achieved in practice and in § 4 and § 5 we present results and conclusions. 

2. Resume of theory 

The internal strain formalism for the diamond structure is set out in Cousins et a1 (1982a). 
The following is a summary of the part relevant to diffraction. 

The square of the structure factor of an unstressed diamond crystal is 

I F H  1 2 0  = 32f2,(1 + cos V H )  

cp, = Bn(h + k + 1) 

(1) 

(2) 

where the phase is given by 

andf, is the atomic scattering factor. 

this becomes 
Under a uniaxial stress of magnitude a applied parallel to the direction 1 = [ I I ,  12,  1 4  

I F H  I : = 3 2 f 2 1  + COS(y7H + V H ) 1  

q~,(a,l> = 2nAS4,0(h1213 + k1311 + lll12). 

( 3 )  

(4) 

where the stress-dependent change in phase is given by 

S,, is a shear elastic constant and A is the internal strain parameter to be measured. The 
index H is omitted in all expressions below. 

Reflections of the type (0 0 4n + 2), where n is an integer, are strictly forbidden when 
the stress is zero: 

IF,/2,=0 ( 5 )  
where w denotes weak. If we apply a compressive stress 1 a/ parallel to the axis 1 = 
(l/t/2)[liO], we have 

v = (4n + 2)nAs,, 1 0 1 .  (6) 

lFwj2, = 16fW2 1 0 1 ~ .  (7) 

I F S  1 2 0  = 64f  (8) 

Under stress we find, using small angle approximations for sin v and cos @, that 

Reflections of the type (0 0 4n) are strong because cos q = 1, and thus for zero stress 

where s denotes strong. Under stress 

IFS/:=64f(1 -ay2)  (9) 
which is effectively constant, since the final term is negligible. 

and one strong. Their integrated intensities are given by 
To find A we need to measure the stress-dependence of two reflections, one weak 
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Figure 1. The variation of integrated intensity 
with stress: curve A,  for a strong reflection; curve 
B, a weak reflection. The transition to the ideally 
imperfect state is shown in curve A and the asymp- 
totic high-stress value P', is indicated. 
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Figure 2. The loci of double reflections for the 
006 reflection of diamond. The azimutJ cy = 0 
corresponds to the fiducial vector [I 101 per- 
pendicular to the scattering plane. Along any 
curve there is an additional reflection in the Ewald 
sphere. Where n loci intersect there are IZ - 1 
reflections simultaneously on the sphere. The 
open window around (o", 35") is an ideal working 
point. 

where the C, depend on the Bragg angle, the beam polarisation and the energy of the 
diffracted photons. Figure 1 shows schematically the variation in P, with stress for the 
two cases. P,,, increases quadratically with stress, equation (7). P, is independent of stress 
insofar as IF, 1 is concerned, but we must recall that equation (9) refers to an ideally 
imperfect crystal. If we start with a high quality crystal we expect P, to have a lower value 
at low stresses but to approach the ideal value at stresses well below the largest stresses 
we apply to our crystals. If P$ is the high-stress limit then IA 1 is obtained from 

The atomic scattering factors are corrected for temperature effects: 

Si =fP e x ~ ( - M , )  (13) 

where 

and the symbols have their usual meanings. The anomalous dispersion is exceedingly 
small as will be seen in 0 3. 
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Table 1. Bulk property data for diamond. a is the lattice constant, S, the elastic constants 
and p the density. 

3.5670 -0.0991 1.7361 3.516 

3. Experimental details 

3.1. Sample 

The sample is a type IIA diamond from D Drukker & Zn, Amsterdam. The sample has 
approximate dimensions 2 x 1 X 3 mm3, corresponding to the [OOl], [110] and [ l i O ]  
directions. Bulk property data are given in table 1. 

3.2. Uniaxialpress 

A frame of maraged steel holds a hydraulic cell and a pair of anvils. In the present 
experiment, special anvils of a hard sintered material (52% WC, 23% Ti, 15% CO,  10% 
Ta) were used. Zirconium shims were used to accommodate residual surface irregularity. 
The highest stress reached was 6.2 GPa (=62 kbar). 

3.3. Working angle 

Since the key measurement in this experiment is that of the integrated intensity of a 
weak reflection, it is important that it should not be contaminated by multiple reflection. 
It i t  thus necessary to choose a working (Bragg) angle within a clear window in the 
diagram showing the loci of multiple reflections. For convenience in setting up the crystal 
it is desirable to have the axis of zero azimuth (fiducial vector, chosen to be the [ 1701 
direction and stress axis) parallel to the w axis of the diffractometer. Thus the windows 
sought lie along a = 0 in figure 2 which has been calculated in the way described by 
Cousins et a1 (1978). The same considerations apply to both reflection and transmission 
geometries. The clearest window appears between 34" and 36". We have chosen to work 
at 34.4". 

3.4 .  X-ray configuration 

The experiments were performed on the EDS (Energy Dispersive Scattering) Station at 
HASYLAB-DESY, Hamburg, in a configuration shown in figure 3 (see Olsen et a1 
(1981, 1986) for details). The x-ray scattering is recorded in the horizontal plane. The 
electron storage ring operates at 5.3 GeV (high-energy physics run). The horizontally 
polarised beam is constrained to a 100 x 100 ,pm2 cross section by horizontal and vertical 
slits and is then intercepted by a gold-coated mirror. Total reflection at a small glancing 
angle is used for eliminating the high-energy x-rays. After total reflection, the beam 
cross section is further reduced to 40 x 40 pm2 by a pair of crossed slits. An ionisation 
chamber is used for monitoring the incident beam intensity. The diamond sample is 
adjusted for Bragg reflection in the (001) planes in symmetric transmission geometry. 
The vertical [liO] stress axis is perpendicular to the plane of the paper in figure 3. The 
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Figure 3. The layout used in the present experiments. Key: SR, synchrotron radiation from 
the storage ring; s, ,  s2 and s3, slits; M,  gold coatedmirror; IC, ionisation chamber; c, diamond 
crystal reflecting in symmetrical transmission geometry; D, solid state detector; MCA, multi- 
channel analyser. The plane of the paper is the horizontal plane. 

diffracted beam is detected by a solid-state detector connected through appropriate 
electronics to a multichannel pulse-height analyser consisting of the Canberra System 
100 installed in an IBM PC-AT. The solid-state detector is made of high purity ger- 
manium and has an energy resolution of 145 eV (FWHM) at 5.9 keV. 

3.5. The energy-dispersive mode 

The fixed crystal will diffract in an energy-dispersive manner and integrated intensities 
will be given by 

P ,  = 2hcr2,N2iO(E,)SOAc IF, I2d: cos2(26) (15) 
(Buras and Gerward 1975) where h is Planck’s constant, c the velocity of light, re the 
classical electron radius, N the number of unit cells per unit volume, io(E) the incident 
intensity per unit energy range, SO the cross section of the incident beam and d, the lattice 
plane spacing. In symmetrical transmission geometry the absorption correction A, is 
given by 

A ,  = (t/cos 6) exp(- p,,,pt/cos 8) (16) 
where t is the thickness of the crystal, pm the mass attenuation coefficient and p the 
density. The lattice plane spacings d, are related to the energy through the Bragg equation 
which is conveniently written 

E ,d ,  sin 8 = thc. (17) 
In the energy-dispersive mode, the weak and strong reflections are collected simul- 
taneously for a fixed Bragg angle. The values of the energies and other relevant dif- 
fraction data are listed in table 2. Comparison of (15) with (10) or (11) allows the C, to 
be inferred. Omitting constant factors one obtains 

C, = i,(E,)d: exp[-p,(E,)pt/cos 61. (18) 

3.6. Energy calibration 

The conversion from channel number to energy is obtained by collecting K a  and KP 
fluorescence radiation from several elements. The known energies of these lines are 
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Table 2. Diamond data for Bragg reflections at 0 = 34.4". Symbols are defined in the text. 

Diamond reflection Diamond reflection 

Parameter 006 008 Parameter 006 008 

E (keV) 18.4570 24.6094 A f t  0.0046 0.0028 
(sin e)/A (A-') 0.84104 1.12139 f'(=fo + Af') 1.2834 0.9954 

0.1445 0.1445 f"(-Af") 0.0014 0.0007 
0.1817 f(=(f'' +f"')'I2) 1.2834 0.9954 

B (A2) 
M{=B[(sin t!?)/A]'} 0.1022 
T(-exp ( - M ) )  0.9028 0.8338 fT 1.1587 0.8300 

1.2788 0.9926 p,,, (cm2 g-') 0.5139 0.3201 
1.15456 0.8277 

f0  
f OT 
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Figure 4. Spectral distribution of the incident 
beam (raw data). The function i,(E) is assumed 
to be a smooth curve through the data points. The 
small peak at 24 keV is In KLY excited inside the 
detector. 

Figure 5. Samples of the MCA spectra showing the 
006 reflection at 18.5 keV. Curve A, no stress; 
curve B, maximum stress (6.2 GPa). 

fitted to a quadratic in the peak positions by the least squares method. A highly linear 
relation is expected, and is indeed found, together with a very small quadratic term. 

3.7. Beam intensity calibration 

The relative values of io(,!?)? the intensities as seen by the crystal, are needed before 
absolute values of /A 1 can be determined. This is a difficult exercise because the direct 
beam is very intense and solid-state detectors are very limited in the count rates that 
they can handle. Figure 4 shows the spectrum &(E) obtained from scattering in the 
forward regime from a non-crystalline Kapton foil. The gold mirror was adjusted for a 
high-energy limit at about 30 keV. Thus of the strong 001 reflections, only the 004 and 
008 were recorded, whereas the 0 0 12 and higher order reflections were excluded (cf 
energies given in table 2). 



Internal strain in diamond 4517 

r T *  
1% 

F 
10 20 30 

a' IGPa'I 
Figure 6. The variation of Pm with the square of 
the stress. The counting error is indicated at one 
point. 
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Figure 7. The variation P, with stress: upper curve, 
Pool(; lower curve, Poos. 

4. Results 

Figure 5 shows the 006 peak at the maximum stress 6.2 GPa. The variation of Poo6 with 
o2 is shown in figure 6. The stress dependences of the strong reflections are depicted in 
figure 7. It is seen that the 004 reflection does not reach the saturation value within 
the available pressure range, in contrast to the higher-order 008 reflection. The same 
observation has been made in the previous studies on silicon and germanium (Cousins 
et al1982a,b). 

After deducing P& and using equation (12), the value of IAI shown below was 
found. Also listed is the more commonly quoted bond-bending parameter 5;, where 
g = - 4A. It is known from stability considerations that A is negative, the mean values 
obtained from this experiment thus being 

- 
A = - 0.031 * 0.005 

and 

5; = 0.125 k 0.020. 

The large relative error is mainly due to the counting error in the very weak006 reflection. 

5. Concluding discussion 

In table 3 are listed the theoretical values of the bond-bending parameter. All except 
that of Nielsen (1986) have been taken from table 1 of Cousins (1982) and the criterion 
for selection has been that the corresponding values for Si and Ge were in accord with 
our remeasured values (Cousins et aZ1987). In passing down the table we are moving 
both chronologically and from the simplest parametrisations of lattice dynamics and 
elasticity to the computationally-intensive results of total energy calculations. The latter 
are very impressive over the whole range of cohesive energy, lattice parameter and 
elastic constant predictions. 
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Table 3. Values of the bond-bending parameter of diamond. 

Value Source Model 

0.268 Musgrave (1963) Simple valence-force-field 
0.21 Keating (1966) Nearest-neighbour non-central force constants 
0.23 Lawretz (1973) Via elastic constants and Raman frequency 
0.12 Weber (1977) Adiabatic bond-charge model 
0.108 Nielsen (1986) A b  initio pseudopotential calculation 

0.125(20) Present work Experimental value 

It is therefore gratifying to find that our experiments lead to a value that is at the 
lower end of the range of calculated values. The bond-bending parameter varies with 
the external strain, and the theoretical values given in table 3 are valid in the limit of 
zero stress. Nielsen (1989) has calculated that for diamond and the stress geometry of 
the present experiment c = 0.114 at 6.2 GPa. Thus 5 increases about 5% in the pressure 
range considered here. 
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